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1 Introduction
-One important consideration in the design of gas turbine engines is limiting the amplitudes of steady-

state vibrations of its components in order to prevent failures due to high cycle fatigue. The most widely

used damping devices incorporate especially designed friction interfaces which dissipate energy and

reduce high frequency vibrations to an acceptable level. The study of steady-state vibrations of structures

with so-called frictional dampers has attracted the attention of many investigators. The first analytical

solution for a single-degree-of-freedom systerm with a Coulomb frictional joint was presented by Den

Hartog [5]. The most relevant contributions until 1979 are discussed by Plunkett [11]. More recently,

further analytical and experimental research has been reported by Griffin and coworkers [7, 13, 41,

Muszynska et al [10], Srinivasan et al [17], Dominic et al [6], and Soni and Bogner (14], among others.

Most analytical studies are limited to cases with one inc:'cr joint only, mainly due to the difficulties of

solving the nonlinear differential equations which result from the mathematical models. The available

mathematical models and methods of solution cannot be easily extended to problems with several friction

joints, and their results do not explain completely all the experimentally observed phenomena. For these

reasons, a more efficient and rational utilization of friction dampers still requires additional experimental

and analytical research

In this report we present a simple, approximate, yet accurate, methodology for studying the steady-

state response of structures containing friction interfaces, but which are otherwise linear. The procedures

that are developed result in systems of nonlinear equations that would be prohibitively expensive to solve

if the global problem were formulated directly. This difficulty was avoided by exploiting the linearity of the

individual subsystems utilizing finite element substructuring techniques. The substructunng approach has

been widely used in mechanics to solve static problems 1121, as well as dynamic problems [8, 91. In fact,

this approach was used to analyze shrouded blades in [16] . The work described in this report is

significantly different in that we incorporate friction constraints at the interfaces. In linear analyses it is

possible to back calculate a coefficient of viscous or structural damping to produce the same peak

response as that obtained with friction damping. This value, however, will depend on the level of

excitation and on the normal force -i the interface; it cannot be obtained directly from the physics of the

problem and can only be calculated once the response is known. For example, in a structure that contains

a friction interface no d'mping occurs if the excitation is small since the joint does not slip. However. for

larger levels of excitation, thr, static triction in the joint can be overcome and rubbing can dissipate a

significant amount of enerq.,, (-early, both conditons cannot be represented by a single value of

equivalent viscous or structuril dampinc In the approach presented here, the nonlinear damping

disspated by friction is calualed airectly for any level of excitation without resorting to "calibrating" the

model



The organization of the report is as follows. First. the differential equations governing the motion of the

system under study are formulated in terms of the complete set of system displacements. A methodology

to obtain approximate solutions of these equations is presented next, based on the assumption that only

the first Fourier component of the tangential forces in the friction joints has a significant participation in the

system response. The problem is ultimately reduced to the solution of an algebraic system of equations

relating the complex variable representation of the relative displacements and the tangential forces in the

friction joints. The use of a complex variable approach allows the development of simple and efficient

algorithms to systematically formulate the equations A procedure to solve the equations for several levels

of normal loads in the friction joints is also presented. It only requires that systems of real linear

equations be solved. Any degree of accuracy can be obtained by applying this procedure iteratively. In

addition, a criterion is established for determining when joints transition from a slipping to a fully stuck

condition.

Relevant computational issues are discussed, with emphasis on the interaction of the methodology with

finite element programs. Selected examples are presented to illustrate applications of the methodology in

practical problems as well as the mosi ;clevant features of the solution procedure. Some mathematical 0

manipulations and more detailed descriptions of the algorithms are presented in Appendices.

2 Equations of Motion
We will consider a structural system consisting of several elastic substructures connected by friction

interfaces and subjected to prescribed harmonic loads, as shown in Fig 1. An appropriate finite element

discretization of each substructure can be carried out shown schematically in Fig. 2 Thus, the system is

represented as a set of elastic substructures with a finite number of degrees of freedom and connected

by friction joints at some of their nodes We will also consider that the normal loads in the friction joints

are independent of the displacements and are given as a vector of positive constants times a positive

scalar parameter, and that only displacements in the tangential direction can occur in those joints

A typical substncture has stiffness matrix K, maos mirtx M, damping matrix C, and applied nodal

loads 0, obtained by standard finite element technques. I et X oe the vector e1 displacements. which can

be divided into two mutually exclusive vectors. .. .orresponding to the degrees of freedom not

connected to friction joints, and X. c"orrespondlinv to the degrees of freedom connected to friction joints

The stiffness, mass and damping matrics and te vector of nod:il 'oads can be partitioned accordingly. 1

Newtons second law ¢ elcds thie f!IQ. ',ing equtl-ns o motion for the s, :hslrurfure

V, , X, 1- .X- . C. ., YX,,I< , K, Y ' ".1
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M21ki + M22k2 + C21Xi + C22X2 + K21X1 + K22X2 = Q2 + F (2)

where dots denote derivatives with respect to time, and F is a vector containing the forces in the friction

joints, with an appropriate sign that will be discussed later These equations can be written for each

substructure of the system, and are coupled by the friction forces, F

The behavior of a friction joint can be described in terms of the relative displacement (difference

between the displacements of the connected nodes) and the tangential force in the joint. Here, joints of

Coulomb type are considered. This implies that when a joint, j, is sliding, its tangential force f, must satisfy

the condition f = i.Nj, where and Nj are respectively the friction coefficient and the normal force in the

joint. The sign of the force must be opposite to that of the relative velocity. These conditions hold until a

change in the sign of the relative velocity occurs, causing the joint to become stuck or start sliding in the

opposite direction When the joint is locked its relative displacement remains constant and its tangential

force is unknown, its value being a result of the analysis.

Exact analytical solutions for the total set of differential equations of motion are difficult to obtain,

because it is necessary to know, at any time, which joints are sliding and which are stuck. This

information, however, is p-I of the solution of the problem rather than part of the data. In ,"eneral, for

each joint, an unknown number of incursions in both conditions can take place during a period of

vibration. Hence, any attempt to develop an exact solution in terms of piecewise linear solutions would

lead to a problem which would have to be approached numerically and whose solution would require

excessive computer resources.

Several well-known step-by-step time integration schemes can be used to solve approximately the

equations of motion [11 The main advantage of these procedures is that any number of slip-to-stick

changes and vice vei -3 can be considered without difficulty However, for nonlinear steady-state

problems the integration has to be carried out for a long time, enough to reach the periodic state, i e.,

until the effect of the initial disturbances becomes negligible. Besides, to obtain accurate results in

multiple-degree of freedom problems, the time step has to be several times smaller than the lowest

relevant period of the system or any of the substructures For these reasons numerical integration can

become impractical even for systems with a moderate number of degrees of freedom

3



3 Approximate Method of Solution
In view of the difficulties of obtaining analytical or numerical exact solutions, approximate methods

have been used by several researchers [14, 6, 10]. The most widely used method is the so-called

harmonic balance method which finds the best approximation of the response in the space of the

harmonic functions witn the same frequency as that of the excitation. This method is completely

equivalent to the linearization technique proposed by Caughey [31; its theoretical foundations have been

thoroughly studied by Spanos and Iwan [15].

The following assumptions are made in the harmonic balance method:

1. All the responses are harmonic with the same frequency as that of the excitation forces;

2. The friction force in each joint has the same direciion 's the relative velocity in the joint, but
opposite sign; 

3. Only the first Fourier component of the frictior force in each joint has a signilicant
participation in the response of the system, i.e the effects of higher components are
negligible.

Another classical assumption is that the friction joints are always sliding, i.e., no stuck cornditions are

considered. Since in many practical cases the joints are only partially sliding, or even completely stuck,

this assumption may lead to erroneous results. A criterion to determine the slip-to-stuck limiting loads is

presented here, permitting the actual states of the joints to be considered correctly in the dynamic

analysis.

3.1 Equations of Motion for a Typical Substructure

The harmonic excitation forces in the nodes of a typical substructure can be expressed as

qJ(t) = qlexp(i(ot) , j=1 ,ndf

where a caret (") denotes a complex quantity, t = time, i = I and ndf = the number of degrees of

freedom of the substructure

According to assumptions (1) and (3) the elements x (t) of the dsplacement vector and f1(t) of the

friction forces vectors are also harmonic, i.e.

x(t) = I exp(iuft) , j= 1,ndf

fI(t) = I exp(io)t) , =1 ,ndf

where is an unknown complex constant For a totally sliding loint. the friclion force has the shape o' an

alternating square wave Consequertly I is a complex constnl with modulus (4,n)u N. where , is the

friction coefficient and N; the normal load on joint I

4



By substituting these expressions into (1) and (2) and dropping the factor exp(iwt), the following

complex algebraic equations are obtained for the substructure:

(K11 - o2M11 + icoC 1 1)X1 * (K12 - we2M12 + iwOC 12)X2  61 (3)

(K2 1 - (02M21 + iuC 2 1)X1 + (K22 -W2M22 + io)0 22)X 2 62 + F (4)

Define

_'j K,j - (02M + iwOCij (i,j = 1,2)

= (k22 - k2 
-k_' 12y1  (5)

PS(Q - k2 1k 110 1 )

where the superscript s indicates that these matrices correspond to the s-th substructure The matrix ,J is

called the impedance or dynamic stiffness matrix.

With the above defiritions. (3) and (4) lead, after solving for X. to

s = 2s + F (6)

-which are equations relating the displacements of the degrees of freedom of substructure s to the

tangential forces in its joints. A detailed derivation of these equations for two illustrative systems is

presented in Appendix A Vector is contains the part of the displacements produced by the external

harmonic loads. Ps is called the compliance or dynamic flexibility matrix, its elements are displacements in

the direction of the degrees of freedom associated with the joints, due tu unit loads applied in the same

directions An efficient algorithm for the calculation of ' and is proposed in Appendix C

Defining now F as the vector containing the friction forces in all the lcints, the displacement of a generic

degree of freedom I of the substructure s can be,,xceo as
sPF(7)

xsand zI are the corrcspcnding &eements rf X' and z'' r~cntain Ihe corresponding terms of ? and, in

order to match the dimension of F contains za tos irn he o1In es corresponding to friction forces not related

to the degree of freedom j. ? also includes appropriate s gns 10 account for the correct direction of the

friction forces as it is discussed in the next section. Ihe rewriting of epi ess, ns (6) into the form of (7) is

illustrated in Appendix A

0-5



3.2 Equations for the Complete System

We now derive the equations for a typical system, like the one depicted in Fig. 1. The first step is to

define the relative displacements in the joints, as follows

xk  X1 (8)

The superscript m can be assigned arbitraily to any of the substructures connected by the joint j; n

denotes the other connected substructure. The subscripts k and I denote, respectively, the degrees of

freedom of substructures m and n that are connected to toint j. This step is illustrated in Appendix A.

Expression (8) means that, by definition, a positive relative vlocity in joint j points from n to m

Therefore, according to assumption (2) at the beginning of this section, a positive friction force points from

m to n Consequently. this force has already the correct s;gn when acting on substructure m, and has to

be affected by a negative sign when acting on substio.-ure n This rule is used when writing equations

(7), as it is also illustrated in Appendix A. Replacing xs(s=m n: j=k,t) given in (7) into (8) we obtain
^ Am - A n) .(

One equation can be written to- each degree of freedom in the friction interfaces obtaining the following

system of complex algebraic equations

D - RF = Z (9)

for the relative displacements in the friction joints in terms of the corresponding friction forces and known

displacements Z. Details of the derivation of R and Z for illustrative systems are included in Appendix A.
3

The number of unknowns in these equations is twice the number of equations. To complete the

formulation, it is necessary to use the constitutive relationships between the joint displacements b and

forces F Within the frame of the assump!Ions considered in this work, the relative displacement in a

generic joint I is

( - x")exp(il) = a expm .i) (10)

a] is a complex constant that cari hn epnrE ..d as dt,)(ii. whor; d )and 0 are the corresponding

amplitude and 01, i,' ari, t

By differentation of :10) tie relavve veio,;lv car, be writlen as I, a jYr i, .t) Recalling that the friction

force in joint j is -, prt,,e as I') f exp,(it. and V' at this force is opposed to the relative velocity, we

conclude that -ornpl x co(,taril I ha-s tcm Icr m . v.trc i ,c real) amplitude of the force

Defninq a. - d ve ', iave

6



=i(dif1 )fj = iaif1  (I1I)

The ratio aj is always positive and can vary between zero and infinity. Both limiting values lead to S

special linear problems. a, equal to zero means that there is no relative displacement in the j-th joint. On

the other hand, aj equal to infinity corresponds to the case of no normal force (and as a consequence, no

friction force) in the joint.

Equation (9) can be now written as

[iA - h] IF = z (12)

where A is a real diagonal matrix with entries a .

For prescribed values of A, (12) is a linear system ot complex equations for the friction forces F that

can be solved directly. We are, however, interested in solutions for prescribed normal forces in the joints,

i.e., for prescribed amplitudes of F and not of A. In this case, a cannot be calculated directly because the

values of d are still unknown. This problem is addressed in the next section, as part of the proposed

solution methodology.

4 An Efficient Solution Procedure

4.1 General

In the cases of interest for this report, the normal loads in the joints are prescribed as a vector of real

constants times a scalar parameter N. i. e., as

IN,"
SN2 e 2

< =N (13)

Nn en!

In practical design problems, it is desired to find the solution for different values of N, and, eventually,

to calculate the N for which the response controlling the design ,displacement. stress, etc) is a minimum.

This is the optimum value of the parameter N

If the joint ,, with friction coefficient p , is sliding, the amplude of the friction force in that joint is fI =

(4/]) iIN In this joint. the relative displacement has an unknown irnplilude d,

7



In general, for a given value of N, some joints will be sliding, and the rest will be locked. There are two

limiting conditions; the first one occurs for high values of normal forces, preventing any slip of the joints.

In this case the governing equation (9) reduces to R F = -Z, which can be solved directly. The other

limiting case corresponds to no normal forces (N = 0) and, consequently. no friction forces in the joints. All

the joints are slipping, and the relative displacement b are equal to Z.

It can be easily shown that Gaussian elimination of the equations corresponding to the locked joints

(using the condition that the relative displacements are zero) yields a reduced system of equations of the

same form as (9), but containing only terms related to the sliding joints As pointed out before, it cannot

be asserted that the amplitude of all of the forces is f, = (4/n)p I NI' because this is acceptable only for joints

that are at least partially sliding, For a locked joint the value of fl is completely unknown and must be

determined as part of the solution.

4.2 The Basic Step

The solution algorithm developed in this work is summarized in this section. It essentially consists of

finding first the solution when all the joints are slipping, and then, using perturbations, progressively

calculating the solutions as the normal loads are increased. The basic step of the algorithm is presented

next.

Equation (9) can be written as

I + kb = (14)

where k = -R1 and F0 = K7. Assume that solution vectors F and b for normal forces defined by N = No

are known The solution for another, close, value of N No 4 AN is desired Let F1 and b1 denote the

new solution vectors, and define AF and Ab so that

F = F+ AF and D1 = D + AD (15)

Since F and b satisfy (14) we can write

SAF , ^KAb = 0 (16)

Note that this is an exact relationship hetween the complex increments of friction forces and relative

displacements. Recalling that the elements of F and b in the known solution are d= dlexp(i01) and =

-iftexp(i0), the increments can be approximated by truncated Taylors series expansions as follows

A~, = exp(iO)Ad1 + iaAO)

At, -iexp(i01)Af1  +i.,\o,

Substitution into (16), after algebraic manipulations, yields the followng system of linear equations for

the increments of amplitude-, and phase angles of th1e relative displakenientc

8
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BiAd + BHA =A (17)

BrAd + (G - BiH)AO = 0 (18)

where Br and Bi are the real and imaginary parts of the complex matrix product bkb. b is a unit complex

diagonal matrix with nonzero elements ^l, = exp(iOj).U" is the complex conjugate of U. Ad and AO are real

unknown vectors of amplitudes and phase angles of the relative displacements. H and G are real

diagonal matrices with nonzero elements d, and f,, respectively. AF is the known vector of increments in

the amplitudes of the friction forces. Note that the matrices defining the coefficients of the system (17) and

(18), which are used to estimate the solution each time N i. increased, are expressed in terms of the

known solution.

Solving for Ad and A9 we have an approximation for AF that can be used to compute IF1 and b1. The

accuracy of this-approximate solution can be verified by computing F2 = F0 -kb1, and comparing F2 with

F1. IIf the comparison is not satisfactory, it is possible to compute a new starting solution that satisfies (14)

calculating the ratios a, = d/f, with b1 and the desired values of the amplitudes of the tangential forces.

Introducing the estimated a, into (12) another vector of forces, F3, is obtained. In general, F3 will be

different from F1. The amplitudes of the elements of the complex vector (F3 - F1) can be taken as a new

vector At in (17) using F3 to compute the coefficients of equations (17) and (18). The steps can be

repeated iteratively in the following manner until a desired accuracy is reached.

1. Solve the system under the assumption that all the joints are slipping,

and define the initial values of ft, to0.

2. Increase the value of giN.

2.1 Compute At, vector of increments of the amplitudes of the
tangential forcesAf = f1-to

2.2 Compute Ad, vector of increments of the amplitudes of the

relative displacements

2.3 Calculate the new relative displacements, d,'= dO+ Adl,

and the ratios a, = dfti.

2.4 Solve equations (12) and compute f2

2.5 If, within some acceptable tolerance, t2= f'continue :-ith 2 6

- If not, set fo= l2and start 2.1 again

9
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2.6 Verify that all the joints are actually slipping, i.e, it all dI

are positive Yes, define to= f2and consider the next

value of jIN (go to 2). No, eliminate equations coi responding to the

locked joints (negative amplitudes) and start 2.1 again.

3. The procedure finishes when all the joints are locked.

4.3 Slip-to-Stick Transitions

In the previous section it has been assumed that all the joints are slipping I his assumption is certainly

valid when the joint normal loads are small but must be checked as N increases. As N increases, the

amplitudes of the relative joint motions decrease. When the calculated amplitude of a joint's relative

motion becomes zero (or negative) that joint is considered lock,-d for subsequent analyses, the amplitude

of its relative motion is set identically equal to zero and the associated degree of freedom may be

eliminated from the set of nonlinear algebraic equations Thus, the number of nonlinear equations that

must be solved becomes progressively smaller as the normal loads are increased and the joints lock.

When a joint is considered locked, the force transmitted by friction through it may be calculated as a result

of the analysis. The joint is actually locked if the amplitude of the force is smaller than tiNer. The slipping

and stuck models are then said to be compatible and there is no transition region where the simple

harmonic assumption breaks down

In solving the numerical example described in the next section, it was found that convergence to

negative values for the amplitudes of the relative displacements is possible. Examining equations (18), it

can be observed that no restrictions are imposed on the values of the increments of the relative

displacements Ad in order to prevent thib condition The physical interpretation of a negative amplitude is

that the corresponding joint is already locked and this condition can be used to eliminate that joint from

the system of equations. For this reason. it is imporlant to have an accurate criterion for establishing at

what normal loads each joint becomes stuck Such a criterion can be foimalized in the following manner.

We start with the solution for IiN = pNo , for which all the onts under consideration are sliding. The

friction forces and the relative displacements are f1. = (4/n)e,N and d respectively. The desired

solution corresponds to an unknown value of pN for wnich f, (41,T)e iN Therefore, the differences in the

0 amplitudes of the friction forces are

At, = (4/n)(f -fot) = (4!)(eI)(i.lN- Q (4'ir)(e I )f % N) (19)

Solving (17)-(18) for a urnt increment in pN i 2 to, ,i 4 , w nta,r increments Nd for the relative

displacements. The total values are

10
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di = doi + Aj.NAd1  (20)

For AgpN yielding di = 0 the joint j will become locked. Applying this condition to each joint, n values of

pN are obtained, where n is the number of joints under consideration. The key result is the smallest value

of normal load increment for which lock up occurs since it is the corresponding joint which will be the first

to stop slipping.

5 Computational Issues
The several steps of the methodology proposed in this work are suitable for incorporation in computer

codes. Detailed rules to carry out automatically such steps are provided in this section, including the

required data structures and some particular numerical algorithms. All the matrices and vectors used in

this section are complex; however the carets (A) used in remainder of the text to distinguish these

quantities form the real ones have been omitted, to obtain a more readable text.

The calculation of stiffness, mass and damping matrices requires only standard finite element

techniques, whose efficiency and computer implementation are widely discussed in the technical literature

on the subject and will not be discussed here. This section deals with steps of the methodology that are

not direct applications of finite element procedures.

5.1 Compliance Matrices of Substructures

The starting step of the formulation is Eq. (6). The reduced compliance matrix r8 of the substructure s

of this equation is defined in Eq. (5) as the inverse of the reduced impedance matrix, namely as

rs = (K22 - K21K ', 12) 1

The vector zs is also detined as a reduced displacement vector, in terms of the inverse of K,,. The

impedance matrix of a substructure can be calculated with any finite element code With this, the

required matrix partitions, inversions and products could be performed directly However. it is more

efficient to proceed as follows

a Compute the total impedance matrix of the substructure K

b. Solve K y = Q (the load vector, 0, is known).

c Select the terms of y corresponding to degrees of freedom connected to

friction joints. This constitutes the reduced vector z
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d. For each degree of freedom, j, connected to a friction joint:

d.1 Form a unit load vector, q, with all its terms equal to zero except

the j-th term, which is equal to 1.

d.2 Solve K y = q.

d.3 The j-th column of r is formed by the terms of y corresponding

to degrees of freedom connected to friction joints.

5.2 Automatic Generation of the System's Equations

A detailed derivation of the equations relating the relative displacements and the tangential forces in 0

the ioints for two illustrative systems is presented in Appendix A. A simple algorithm for the automatic

generation of these equations for any given system, &tarling from the reduced compliance and

displacements matrices, rs and zs, of the substructures forming the system, consists of the following

steps: 0

a. Assign an order number s to each substructure and an order number j to each

friction interface.

b. Recall that the rs matrix of substructure s is reduced to its degrees of

freedom connected to friction interfaces. Consider rs partitioned

according to those interfaces Let p be the number of partitions. A

typical term of rs is rV, u,v= 1,p

A similar partition for vector zs results in a typical element z". u= 1,p

c. For each friction interface define, arbitrarily, a direction for the relative

displacements, i. e., a "starting" reference substructure. m, and an "ending" 0

substructure, n The relative displacement in joint j is given by

d,= xD ~

where xi1s the total displacement of substructure m in the direct!on

of its degrees of freedom connected to the joint, i. A similar

definition applies to xn

d. Form ani incidence vector, VS, for each substructure s containing

the order numbers of the interfa( t. to which substructure s is connected

12
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Observe the following rules:

d.1 the size of the vector is p;

d.2 the order of the incidences agrees with that used when computing rS;

d.3 the sign of an incidence is positive if s is a starting substructure

for the corresponding interface and negative it the substructure is

an ending one.

e. Form the system matrix R by adding the contributions of each

substructure, as follows:

e.1 the size of the matrix is equal to the total number of friction joints;

e.2 add p2 terms of the form ruv

e.3 define iu = u-th term of the incidences vector Vs , and iv = v-th

term of the incidence vector Vs;

e.4 ruv is added to Rjujv, with the sign of the product (iu)(iv).

f. Form the system displacements vector Z, by adding the term zu

to Zi, with the sign of iu.

Note the similarity between these rules and those to form the stiffness matrix of a structure from the

element matrices in the Direct Stiffness Method . All the advantages of this method, such as sparsity,

banded or skyline shapes, etc. are in fact preserved

The proposed algorithms have been applied to the illustrative systems depicted in Figures 10 and 11 in

Appendix C. Additional rules are presented there to include some particular cases.

6 Numerical results
To verify the accuracy and applicability of the methodology, the solution of the one-joint problem

depicted in Fig. 3 was computed over a range of values of the system parameters using the approximate

method and the results compared with exact solutions. The exact solution was developed in [2] by

exploiting the piecewise linearity of the differential equation, i e , when the joint is slipping the friction force

0 is constant and the solution can be represented by one set of harmonic functions with unknown
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coefficients, and when the joint is stuck the system is also linear and can be represented by another set

of harmonic functions with unknown coefficients. The coefficients are calculated along with the time at

which transition occurs between slipping and sticking by forcing the solutions to satisty the appropriate D

continuity and periodicity conditions. In general, the results from the approximate procedure compared

quite well with exact solutions [2]. Representative results are shown in Table 1 for M1 = M2 = 0.5, K1 =

0.25, K2 = 0.75, Q = 1 .0, a = 0 = 0.0, and C, = C2 = 1 percent of critical. The two cases shown in the

table are for excitations frequencies of L = 0.707 and ( = 1.0. These frequencies are particularly

interesting since the first corresponds to the resonant frequency that the system would have if the damper

were slipping all the time, while the second is the resonant frequency of the system when the damper is

stuck all the time. Consequently, these two frequencies turn out to be the frequencies of most interest in

the limit for either very large or small excitations, respectively.

Part (a) of the table shows exact an( approximate results for w = 0 707. As is indicated by the table

the approximate method provides results which are in close agreement with the corresponding exact

values- Part (b) of the table shows exact and approximate results for t o 1.0. In this .asc the

approximate procedure was less accurate, but still adequately predicted the absolute displacement of the

masses. The absolute displacement of the masses were of comparable magnitude; consequently, small

errors in their values resulted in relatively large percentage errors in the relative displacement as it

approached zero. This is a limitation of the approximation caused by the fact that if slip occurs the

Fourier coefficient of the friction force is taken to be 4/TE, independently of the amplitude of the relative

motion. In fact, this value must converge to unity as the relative motion goes to zero and it is this

discrepancy that induces the errors previously cited A number of procedures were tried for

approximating this transition of the Fourier coefficient from 4/n to 1 as the amplitude of the relative motion

went to zero. In general, none of the approaches worked (on the average after taking all frequencies of

excitation into consideration) any better than the simple one utilized here of setting the Fourier coefficient

equal to 4/n when the joint slips.

In summary the approximate approach used in this report proved to be a relatively accurate method for

calculating the absolute and relative motions of the vibratir masses except for small relative motions at

an excitation frequency near the natural frequancy of the locked system. Under these conditions, it

adequately predicted the absolute motion of the masses and qualitatively predicted the correct trends, but

yielded significant percentage errors in values of relative motion between the masses This is a limitation

of the approach that should be taken into consideration in its use

To demonstrate the applicability of the methodology in dusirn problems we have analyzed the system

14
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with two substructures and two friction joints shown in Fig. 4. Plate finite elements (including only bending

deformations) were used to calculate the stiffness and mass properlies of each substructure and

structural damping was set at 1 percent of critical damping. The stiffness matrices are also presented in

Fig. 4. External loads amplitudes Q= I and Q2 = 1 were considered. The normal forces in the friction

joints are defined by e, = 1 and e2 = 2.

The natural frequencies and modes of vibrations for the system with the joints locked, and for

substructure 1 isolated were calculated (substructure 2 was considered massless). The mode shapes for

the isolated substructure are shown in Fig 4. The mode shapes for the total system are similar, but

correspond to higher frequencies. In both cases, the first mode is flexural, and the second one, torsional.

In the dynamic analysis the excitation frequency was varied between 400 and 1500 rad/sec to include

the four possible resonant conditions (see values below) Several values of the normal force in the joints

were considered.

Results are summarized in Figs. 5 through 9. In Fig. 5 the maximum horizontal displacement of

substructure 1 in the joint 1 is presented as a function of the excitation frequency. The first peak in Fig. 5

corresponds to the first natural frequency of substructure 1 (o) = 586 rad/sec) and occurs when there are

no forces, and consequently no energy dissipation, in the joint. If the normal forces increase, the

response for that particular frequency decreases quickly. However, for frequencies close to the first

natural frequency of the complete system (w = 702 rad/sec) the response increases very rapidly, and a

second peak is reacheo. This peak has its maximum value when the normal forces are high enough to

keep the joints locked, preventing energy dissipation by friction. The variation of the response around

these frequencies can be more clearly appreciated in Fig. 6, where the first part of Fig. 5 is repeated with

an enlarged frequency axis. Peak responses also occur for the corresponding second natural frequencies

(o) = 1215 and 1412 rad/sec), but their values are only 23% of the former ones.

Fig. 7 shows values of the normal forces for which a change from the stuck to the sliding condition (or

vice versa) occurs in each friction joint, For a prescribed frequency a joint is locked for normal forces that

e- - ed the value given in the corresponding curve. For given normal loads, a horizontal line can be

drawn in Fig. 6 to find the limiting frequencies for which each joint is either always stuck or always sliding.

The slip-to-stuck curve has a peak at o) = 702, the first resonant frequency when the joints are locked.

The reason is that the lar, ,st tangential forces in the loints under harmonic excitation occur for this

resonant condition, requirit e maximum normal loads to prevent slipping The slip-to-stuck curve for a

wider range of frequencies is presented in Fig, 8, where it can be appreciated that a second peak exists

for the second (torsional) resonant frequency of the locked system
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Results presented in Fig. 9 can be useful for design purposes. This figure shows the maximum value,

Ximax, of the displacement at node 1, as a function of the parameter ptN defining the normal forces in the

joints. It was obtained by considering all the possible values of the excitation frequency, i. e., by taking the

peak values of the response curves of Fig. 5. The optimum value of ViN is the one that gives the minimum

value of x 1max (0.6 in this case). A similar curve was developed for the displacement in node 2, and the

same optimum value of IN was obtained. Curves corresponding to any other response of interest can be

easily constructed. Naturally, it is highly desirable to design the friction joints to have values of the normal

forces close to the optimum ones.

7 Conclusions
A simple methodology for analyzing the steady-state vibrations of linear structures containing friction

interfaces was presented. The numerical problem is reduced to the solution of systems of linear algebraic

equations. Well-known, efficient algorithms can be used tot this purpose The main hypotheses are that

the response is harmonic with the same period as that of the excitation, and that only the first Fourier

components of the friction forces have a significant participation in the dynamic response. It can be noted

that, for the simple Coulomb model of friction used here, the Fourier series for the nonlinear forces would

contain only odd integer multiples of the tundamental frequency, and that the amplitudes of the terms

decrease at least as fast as their frequencies increase. Consequently, we would expect relatively minor

contributions from the higher order harmonics that have been neglected. As a result, we expect the

solution procedures presented here to be reasonably accurate in most situations

Within the frame of the above assumptions, the complex variable approach presented here is an

efficient and systematic tool which can be utilized to derive the equations governing the motion of the
0

friction joints in terms of their relative displacements and tangential forces. In fact, it is possible to

formulate the equations in a similar manner to the direct stiffness method, taking advantage of the

topological and storage procedures devised for such a method

The comparison of numerical results for the single-joint problem of Fig 3 shows that the approximate •

methodology can yield very good estimates of the exact results. The major discrepancies occur when the

joints are only partially sliding, because in these cases the first l ourier coefficients of the friction forces

are closer to unity and not to 4/t The errors could be reduced by using some rules to calculate the

Fourier coefficient as a function of the normai forces in the oitts These rules can be easily incorporated

in the methodology: however, their general applicability mus! be carefully verified first

The linearization concepts proposed in this work can the ,ed for ,ysleri, wlh friction interlaces
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obeying different constitutive laws. In general, assuming that the response is harmonic, the differential

equations can be transformed into a system of algebraic nonlinear equations relating relative

displacements and friction forces in the joints. The equations can be linearized by considering truncated

Taylor expansions in terms of the increments of the unknowns.

A criterion to determine the slip-to-stuck transitions in the joints is required to correctly formulate the

problem under study, whatever method of solution is employed. It can be appreciated in Table 1 that it is

mathematically possible to obtain negative amplitudes for the relative displacements in the joints. Similar

results were obtained in the two-joint problem. Physically, this would correspond to friction forces with the

same, not opposite, direction as the relative velocities. In reality, the joints are locked, and that physical

fact must be incorporated into any solution procedure one may use to calculate the response for high joint

normal loads.

The inclusion of possible locked joints allows a direct extension of the methodology to systems

comprising substructures continuously connected, like the bladed disks of turbine engines or similar

circumferentially periodic structures. The continuous interfaces can be treated as friction interfaces with

the joints always locked.

The methodology presented here constitutes a good compromise between numerical effort and

accuracy. This is particularly true when a large number of cases have to be solved. For instance, the

derivation of optimization curves, as that depicted in Fig 9, requires solutions for a wide range of

frequencies, for each cet of normal load values. In this case, the methodology takes advantage of the

already known solutions to find additional ones In addition, if an exact solution is required, the

approximate results could be used as initial conditions to solve the differential equations of motion using

finite difference methods. This would significantly reduce the time for which integration has to be carried

out, since the initial guess would be close to the steady-state solution
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Nomenclature
A diagonal matrix with entries a

aI ratio d

B, imaginary part of U'kU

Br real part of bkb

C damping matrix

D vector of relative displacements

d relative displacement in joint j

e factor for normal force in joint j

F vector of friction forces

f friction force in joint I

G diagonal matrix with entries f

H! diagonal matrix with entries d

i unit of imaginary numbers

K stifness matrix

M mass matrix

N pia.ameter deftning nnrmal forces

N r crrnal force in joint 1

0 vt,:Aor of applied norjil lrcos

0 q load applied at nodef

Fl reduced flexibility matrix

r cor -lensed flexibility ma tix
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L I II I I I I I I , i , .
t time

U complex unit diagonal matrix

X veclor of total displacements

x, total displacement of node i

Z reduced vector of displacements

z condensed vector of displacements

(i ra!to of force amplitudes

,B phase angle

A increment of

0 p friction coetficient

S)vector of phase angles

(), phase angle in joint j

o) excitation frequency

A caret (A) denotes a complex quantity,
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TABLE 1

COMPARISON OF RESULTS FOR THE SYSTEM OF FIG. 3

a) dimensionless frequency w = 0.707

relative displacement
displacement of mass 1

pN/Q
exact approx. exact approx.

0.20 149.1 149.1 149.0 149.1
0.40 98.0 97.9 98.0 97.9
0.60 46.9 47.2 46.9 47.2
0.80 2.1 -5.6 2.5 2.1
1.00 0.0 0.0 2.0 2.0

b) dimensionless frequency = 1.0

relative displacement
displacement of mass 1

exact approx. exact approx.

1.00 3.40 3.61 5.35 6.38
2.40 2.76 3.06 10.93 12.73
6.91 1.36 1.30 30.49 35.24

10.00 0.57 0.12 42.61 50.87
12.50 0.05 0.00 50.93 51.76
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APPENDIX A. COMPLEX EQUATIONS FOR ILLUSTRATIVE SYSTEMS

A detailed derivation of the complex systems of equations resulting from the application of the

methodology is presented in this appendix for the two illustrative systems depicted in Figs. 8 and

9. In order to obtain general rules for deriving the equations for any system, we have tried to

include in these examples most of the situations that can occur in practical problems. All the

quantities used in this appendix are complex, for clarity. however, the caret ( ) that denotes

complex in the text of the report has been supressed.

1. System of Figure 10

The system of Fig. 10 is a typical case of several structures interconnected by severa friction

interfaces. The numbers asigned to the substructures, to the friction joints and to the degrees of

freedom are indicated in the figure. First, the relative displacements in the joints are defined as

follows:

d x 2  x10I I

d ax -x2

4 x3Ad3 ax -x A .1

4 5
d "x 4 x5

4  2  1

4 6

These expressions constitute Equations (8) for this system. Equation (7) can be now written for

each joint. including the appropiate sign for the friction forces, as follows:

X z *r(fS I I f

X 2r r f

3 1 11 12

2 2 2 r
2  

! !

X z r r

X z * r (*f) r (-f)
I I 2 11 3

4 4 4 4 4
X z r r r f

I I 12 13 ]

4 ' + r4 4

<1 r r *'i 2! 22 23 f

* x'~ z' Z r4 r'2 r',



3 5 5
X z * r (-f)

I I II 4

6 6 r6

x "z * (-fI I II S

Def ine

F ff f f f f T A .23 5

Now. by using appropiate zero terms, the x' can be expressed in the following form:
j

x z + <-r' 0 0 0 0 > FI I il

2 2 
2  

2x Z2  < -r 0 0 0 >F

2I 1
'" z' r2 2=Z <r -r 0 0 0 > F

- 21 22

3 j 3 3
x I z I <0 r -r 0 0 >F

4 4 4 4 4*z *-(0 0 r r r >F A .3
Xl I 1II 12 111.

4 4 4 4 4x 4 z *<0 0 r r r >F
2 2 .11 22 23

4 4 4 4 4
3 3 3t 32 33 >

x, z, -<0 0 r r > >F
[33

x 6 z 6 <0 0 0 -r 6 >F

6 6
* z -<0 0 0 0 -r >F

The quantities between brackets are vectors denoted as r' in expression (7) of the text. In the
above form the z' can be replaced into the expressions for the relative displacements A.I and

vector F can be extracted as a common factor. After reordering some terms we obtain equation
* (9) of the text. I. e.

D - RF z Z
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D d1  d2 d3 d d A .4

+r ~r2 0 0 0
11 I 23123

-r ( 2 r222 +r 3  -r3 0 0

R 0 -r3 (Tr r) +r 4 + r A

0 r4 (4 +r5 +r4

0 0 +r+ (r -r 6

31 32 33 11'j

z 
2  

- z:
I I

z3 -z

1 2

Z 4 z z A .61! 1

z4 z 3
Z2 1

z 4 z6
Z3 1

2. System of Figure 11

This is a system with two substructures and three friction interfaces. The peculiarities

distinguishing this system from that of Figure 10 are that two surfaces of one substructure are

connected by a internal friction interface, and that the other substructure has a friction interface

with the ground. The relative displacements in the joints are

4d u~ x' -
I 2 I

d - x2 - x '
d ux2 I

d - 0 x2
3 2

The total displacements of the substructures in nodes connected to friction joints are

I Z r: r rI  f
I: 12 13

xzr r r +f
IX Z rI rI 2 2 21 22 23

r F r -fX3 31 1: r2 r31"
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or

x uz1 .< (r -r1) -r3 03)F

12 Z2 *<(r -r, ) -r' 0>f= 3* r2 - r Il ) 3 0 > F

Il I 11 1 2

x 2 I z r + r 0 -r 2 0r > F

2 2 22 21 23

F I f 2 f

£ *Z *<( -r - O>F
3 •  3 r32 - 31 -33

0s nr 2 a d 2  >

3
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APPENDIX B. DERIVATION OF LINEARIZED EQUATIONS (17) AND (18)

From section 4.2. the vector of increments of friction forces in the joints can be expressed as

exp(io1 ) Afl figi

exp(loz ) Af 2  r 2A,B

exp(isGn) Afj

Define

exp(mie) 0 .... 0

0 exp(io,) .... 0

ID B .2

o 0 .... exp(io)IN

ro 0 0

1 B.3

100 ....

AF • Af Af .... )T B.4
I 8 an

A0 •{AG0 A9, .... L#} .

Then B .1 becomes

. i -J AF B. 6
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Similarly, if we define, in addition,

a .... c

o a, .... o

B.7

0 o .... a

we obtain

AD {Ad Ad .... Ad B .8
I 2 nt

the vector of increments of the relative displacements is expressed as

Ab - V AD i AIO B.9

Substitution of B.6 and B69 into Equation (16) yields

-11JAF + itA@ + IZODAD + iflAO) = 0 B.io

Note that 0 (defined in A.2) is a unit matrix such that its inverse is also its complex

conjugate, i.e.. t1 = *. Premultiplication of B .10 by t" gives

-ICT*AF ,+ *AO - WP.ViD ' lD-A , B.II

Define now the following real matrices: 3

f 0 .... 0r f .... 0

G -B .12

0 0 .... f

3 8

I f .......... .. ......_ ..



d 0 .... 0

0 d .... 0

H B.13

0 0 .... d n

Considering the definitions of I. C and I we have

i C G B.14

=i V H B.15

and B.11 can be written as

- *AF - ,GAO 0t t(AD iHAO) 0 B.16

I can be easily verified that the elements of the complex matrix product Wit 0D are

2 £nmeXP[i( m ' - )] B.17

Let B and B be the real matrices containing the real and the imaginary parts of the terms 6 AMr amlll

i.e.

0 0 B * iB 8.18 0

Introducing B.18 into B.16 we have

-iAF + GAO + (B + iB)(AD - i HAO) - 0
r i

Equating separately the real and imaginary parts of this equation to zero. equations (17) and (18)

of the text are obtained.

4 3
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APPENDIX C. VERIFICATION OF ALGORITHMS

Algorithms for the autotatic derivation of matrix R and vector Z that define the complex system

of equations in the methodology proposed in this work are presented in section 6 of the report.

The purpose of this Appendix is to illustrate and verify the algorithms by applying them to the

representative systems depicted in Figures 10 and 11. Additional rules are also presented for the

inclussion of particular cases in the general algorithms, and the required data structures are

developed. Even though all the matrices and vectors used in this Appendix are complex the caret

() used in the text to distinguish these quantities form the real ones have been omited. to obtain

a more readable text. The letters denoting the steps are in agreement with those used in the

presentation of the algorithms in section 6.

1. System of Fig. 10

a. The numbers assigned to the substructures and to the friction interfaces are presented in Fig.

10. In this case s a.6 and j - 1.....5.

b. The reduced compliance matrices and displacement vectors of the substructures have the

following sizes:

substructure. s size, p

1 1

2 2
3 2
4 3
5 1
6 1

The corresponding matrices, r', and vectors z' are all shown in section 1 of AppendixA/. where

they were used to write Equations 7 for this system. Substructure 3 is a particular case because

the rigid link indicates that the same degree of freedom is connected to two substructures, and

* consequently the original size of matrix r3 (1 by 1) does not agree with the size required by the

algorithm (2 by 2). To resolve this discreepancy a new. enlarged, matrix r is formed by

repeating the original matrix as necessary. Specifically, the original matrix r3 
, r 3, becomes

r 
3

t II rI Ir

c. The relative displacements in the friction interfaces have been defined at the beginning of

section I of Appendix A. In tabular form those definitions can be expressed as:
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joint, j m n

1 2 1 1 I
2 3 2 1 2
3 4 3 1 1
4 4 5 2 1
5 4 6 3 1

d. In agreement with the previous definitions, the incidences vectors, Vs. for the substructures

are

V' < (-l >

2V ( +1 -2 >

3V < +2 -3 >

V X < +3 +4 +5 >

V5  < -4 >

6V > -5 )

V indicates that substructure I is connected to friction surface I as an "ending" substructure.

V5 and V 6 have a similar interpretation. V3 shows that the first degree of freedom of

substructure 3 is connected to surface 2 as a "'starting- value whereas the second degree of

freedom is connected to surface 3 as an "ending" value. According to V4. the three degrees of

freedom of the "starting" substructure 4 are connected to surfaces 3, 4 and 5, respectively.

e. Following the rules to form the system compliance matrix, R. for the first substructure we

have u - v I and iu iv * -1. Therefore. the product (u)(iv) is positive and r1  has to be

added to R1 Substructure 2 has u * v = 1.2 with an incidences vector (1.-2>. We have to

add 2x2 terms as indicated um the following table:

u v II Iv sign of add to
(iu)(,v)

I l 1 . r" R

1 2 1 -2 r2  R
12 12

2 1 -2 r2  R21 21

2-. 2 -2 -2 r R22 22
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A similar table for substructure 3 is:

u v iv sign of add to
(iuj(,v)

31 1 2 2 - r R2
: 1I 

22

1 2 2 -3 - r R11! 23
3

-3 2 - 3 R
1 32

2 2 -3 -3 + r3 R
1 33

Performing the additions for the six substructures, the matrix R shown as expression 1.5 in

Appendix A is obtained.

f. To form vector Z the term z' of substructure I is added to Z' with a minus sign; the term

z2 of substructure 2 is also added to to Z' but with a positive sign. while the term z 2 of the

same substructure is added to Z with a negative sign. and so on. The result is expression 1.6 of

Appendix A.

2. System of Fig. 11

a. The numbers assigned to the substructures and to the friction interfaces are included in Fig.

11. In this case s = 1.2 and j s 1.2.3.

b. The reduced compliance matrices and displacement vectors of the substructures have the

following sizes:

substructure. s size, p

1 3
2 2

The corresponding matrices. r, and vectors z are all shown in section 2 of Appendix A.

c. The relative displacements in the friction interfaces have been defined at the begmmng of

section 2 of Appendix A. In tabular form we have

4
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joint. j m n i

1 1 1 2
2 2 1 1 3
3 0 2 0 2

The -starting- substructure for joint 3 is the ground. which is indicated by assigning zero

values to m and j.

d. The incidences vectors, V', are

V < -1 +1 -2 >

V2  < +2 -3 >

e. Following the rules to form the system compliance matrix, R, expression 1.8 of Appendix A

is obtained.

f. The system dispalcements vector Z is expression 1.9 of Appendix A.

3. Basic Data Structure

The basic data structure to represent a system with friction interfaces is the table defining the

relative displacementes in the joints, namely the table containing m. n. i and I as a function of

the joint number. j. The vectors V' that are used to form R and Z can be constructed

automatically from the table using the following rules:

a) The i-th element of vector V contains the joint number j with a positive sign:

b) the l-th element of vector VR contains the joint number j with a negative sign.

c) Apply a) and b) to all the joints. i.e. to all the rows of the table, to obtain all the terms

of all vectors V'.
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